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CASE A CASE E
Fig. 1 Patterns of electric current for constant flow rate
in square ducts with conducting (black) or nonconducting
(white) walls. Hartmann number M = BQa(<r/r})1/2 = 2,
where J?o, a, <r, and f) denote flux density of external mag-
netic field, half the length of a side of duct, conductivity,
and viscosity of fluid, respectively. The horizontal walls
are short-circuited in case B but unconnected in case D
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Unification of Matrix Methods of
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Nomenclature
column matrix of internal stresses
transformation matrix of unknowns into internal stresses
transformation matrix of external loads into internal

stresses
flexibility matrix of individual elements
column matrix of external loads
joint displacements
unknowns (forces or joint displacements)
transformation matrix of joint displacements into strains
stiffness matrix of individual elements

null matrix
transpose of a matrix

10
M

Fig. 2 Reciprocal of rate
of flow vs Hartmann num-
ber. Q(M) denotes the
volume rate of flow at
Hartmann number M, and
<>(0> that at M - 0; (A)
Chang and Lundgen,1 (B)
Tani,2 (C) Lundgen, Ata-
beck, and Chang,* (D)
Tani,2 and (E) Shercliffs

As a matter of fact, there is a strong resemblance between
cases A and B both in current pattern and flow rate (Figs. 1
and 2). Indeed, only 21 and 16% of the current (this per-
centage tending to zero as M or the height/breadth ratio of
the duct becomes infinitely large) comes from the vertical
walls in case A at Hartmann number M = 5 and 10, respec-
tively. (Thus Hartmann flow with conducting walls1 is
exactly the same as with nonconducting walls with net
current.)

Although the current patterns in cases D and E are differ-
ent in the neighborhood of the horizontal walls, the flow rates
are expected to be only slightly different when M1/2 is large,
because the electric resistance to the current loop in the
boundary layer on the horizontal wall of case E is of the order
of M1J*, whereas the principal contribution of the order of
M comes from the boundary layer on the vertical wall in
both cases D and E.

Finally, case C4 has the same mechanism of flow resistance
as cases A and B at large M, but the current loop in C suffers
electric resistance of the order of M1/2 in the boundary layer
on the horizontal wall. Thus the flow rate for this case
at large M may be expected to be similar to case A with the
conductivity of the fluid somewhat decreased.
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Introduction

THE matrix methods of structural analysis which have
appeared recently in the literature are of two classes:

the Argyris method and the Klein method. The Argyris
method can be subdivided into those in which forces or de-
formations are taken as unknowns. This is stated clearly
in Ref. 1, where the basic references of the two methods are
mentioned.

In Ref. 2, Klein exposes the foundations of his method and
points out as one of his disadvantages: "Matrix is large."
Later, in more recent works,3. 4 Klein advocates a pretri-
angularization of his initial equations to avoid that disad-
vantage. He also states that the ideal pretriangularization
is obtained when the redundant part of the structural sys-
tem is isolated. In this case the order of the matrix which has
to be inverted is much less than the order of the initial large
matrix.

The purpose of this note is to show that Argyris' equations
are exactly KlehVs after the ideal pretriangularization is ob-
tained. This conclusion allows the unification of all meth-
ods of matrix structural analysis.

Theory
By the Argyris formulation, taking forces as unknowns,

the internal stresses and the joint displacements of a struc-
ture submitted to external loads applied at the joints are,
respectively,5

and

where X is given by

S = b0R +

= b0ys

DX + DQR = 0

(D

(2)

(3)

Equations (1-3) can be written jointly in Table 1, where
(61) and (60) are, respectively, matrices 61 and &0 in which the
rows corresponding to the independent internal stresses are
excluded, and (60'/) is matrix' 60*/ rearranged so that• cotanLns
referring to the independent internal stresses are written
first.
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Table 1 Pretriangularized equations with forces as un-
knowns

Table 3 Pretriangularized equations of the example
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Table 2 Pretriangularized equations with displacements
as unknowns
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If joint displacements are considered as unknowns, the
response of the structure to external loads applied at the
joints is given in Ref. 5 as

and

CX = R

S = raX

(4)

(5)
Equations (4) and (5) can be written jointly in Table 2.

Argyris' equations, put in the form of Tables 1 and 2, are
exactly the equations of Klein when the ideal pretriangulariza-
tion is attained, a situation in which there exists always a
group of equations that are not pretriangularized. This
group of equations is constituted in Table 1 by Eq. (3) and
in Table 2 by Eq. (4).

Example

Consider the first example from Ref. 2. Taking as re-
dundancies the internal stresses PS and P^ the pretriangular-
ized equations as in Table 1 are, for this case, given in Table
3. Solving the equations from Table 3, the solution given
in Ref. 2 is obtained. Incidentally, there is a minor differ-
ence: in Ref. 2, with three decimals, PS = 0.226 and P± =
0.344. From Table 3, P3 = 0.216 and P4 = 0.334. This
difference obviously is due to the fact that in Ref. 2 a matrix
of order 16 was inverted and here a matrix of order 2.
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Equivalence between Chemical-Reaction
and Volume-Viscosity Effects in

Linearized Nonequilibrium Flows
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IN the theory of sound propagation in a relaxing medium,
it is a well-established fact that, for wave frequencies

much smaller than the relaxation frequency, the relaxation
process itself can be considered as having the same effect as
a volume viscosity.1 It is interesting to determine under
what conditions the same statement would hold for steady
nonequilibrium flows.

It is the purpose of this note to show that this happens for
"linearized flows" when the ratio between a macroscopic
characteristic time tM and a suitably defined chemical char-
acteristic time is much greater than one, i.e., near-equilibrium
conditions. In these conditions, the basic equations for the
linearized motion of a reacting medium are shown to reduce
to those pertinent to an equivalent motion, at a Reynolds
number defined in terms of appropriate thermodynamic
derivatives, of an inert but viscous medium.

Assume the chemical affinity A, the specific volume v, and
the entropy per unit mass of the mixture, s, as the basic set
of independent thermodynamic variables. The appropriate
thermodynamic potential \f/ is the first-order Lagrange trans-
form2* 3 of the specific energy e with respect to the progress
variable of the reaction £:

= e
and the Gibbs relation

Tds - pdv -

(1)

(2)
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